- Introducción
- Gametogénesis
- Espermatogénesis
- Anatomía e histología del testículo
- Citologia de la espermatogénesis
- Espermiogénesis
- Espermatozoide
- Células sustentaculares o de Sertoli
- Células intersticiales ó de Leydig
- Sistema de conductos excretores
- Glándulas anexas
- Ovogénesis
- Referencias bibliográficas
ABSTRACT
Gametogenesis is the production of haploid sex cells (in humans, ovum and spermatozoa) that each carry one-half the genetic compliment of the parents from the germ cell line of each parent.
The production of ovum is termed oogenesis and the production of spermatozoa is called spermatogenesis. Both oogenesis and spermatogenesis provide a mechanism through which genetic information may be passed to offspring. The fusion of spermatozoa and ova during fertilization results in a zygote with a fully restored diploid genome.
The production of male and female gametes a highly complex and coordinated sequence of a mitotic division, two meiotic divisions, cytoplasmic apportionment (divisions) and cellular differentiation.
In eukaryotic organisms the gametes are derived from primordial germ cells, which enter the gonads during early development. During embryogenesis, the primordial germ cells are determined early in development by the presence of a cytoplasmic component termed germ plasm. Once germ cells are determined they follow a different maturation and, of course, genetic function, than do the remaining somatic cells of the body. Primordial germ cells are the stem cells that, via mitosis, supply both spermatogonia and oogonia.
In humans, spermatogenesis starts with a diploid (2N) spermatogonium that carries the full genetic compliment of 46 chromosomes (22 autosomal pairs, one X and one Y sex chromosomes). The spermatogonium represents the germ cell line from which all sperm cells are derived. Sequentially, the process of spermatogenesis via mitosis produces a primary spermatocyte that is also diploid (2N) and then via meiosis, two secondary spermatocytes that are haploid (N). The haploid secondary spermatocytes carry 22 autosomes and either an X or a Y sex chromosome. The secondary spermatocytes each undergo a second meiotic division to form a total of four haploid spermatids. Subsequently, nurtured by surrounding somatic cells, through the process of cellular differentiation the four spermatids produce 4 sperm cells capable of motility and fertilization
In human females the germ cell line is represented by the diploid (2N) oogonium that carries the full female genetic compliment of 22 autosomal pairs and two X chromosomes. Mitotic division yields a diploid primary oocyte. Meiotic divisions then produce one female gamete–the ovum. In humans, the first meiotic division is suspended in the diplonema stage during embryonic development. Meiosis resumes, one ovum at a time following puberty and during the ovulatory period of the menstrual cycle. Maturation proceeds with the production of haploid (N) secondary oocytes with 22 autosomal chromosomes and an X sex chromosome (the sex chromosome must be an X chromosome because normal human females carry two X chromosomes and no Y chromosomes). Also formed is a haploid polar body that is nearly devoid of cytoplasmic contents. This is a fundamental difference between male and female Gametogenesis. In males, there is a nearly equal divison of cytoplasm to the gametes, in females the cytoplasmic contents are preserved for the eventual "egg" or ovum. Extraneous genetic material is removed via polar bodies. Another meiotic division results in the production of an ootid and yet another polar body (the eventual number of polar vies associated with an ovum may equal as many as three if the first sloughed off polar body undergoes a subsequent division. Cellular differentiation of the ootid yields an ovum ready for fertilization. In many cases, however, the last maturational processes are accelerated because in human females, meiosis II is usually completed after fertilization.
1. INTRODUCCION
La reproducción es la capacidad que los seres vivos tienen para perpetuarse y dar lugar a otros individuos semejantes a ellos y constituye una función básica de todo organismo.
Los detalles del proceso reproductivo varían mucho según los organismos, pero existen dos mecanismos por los cuales se propagan o multiplican: uno es la reproducción asexual, donde los nuevos organismos provienen de un progenitor, el otro es la reproducción sexual, donde los nuevos organismos provienen de la combinación genética de dos células llamadas gametos aportadas por dos progenitores.
La reproducción sexual esta conformada por dos etapas, una primera etapa también llamada gametogénesis, en la cual se produce el gameto o unidad reproductora mediante el proceso de meiosis y la segunda etapa o fecundación durante la cual el gameto masculino y el femenino se unen para formar el huevo o cigoto.
Las células haploides que están especializadas para la fusión sexual reciben el nombre de gametos. Típicamente se forman dos tipos de gametos: uno es grande e inmóvil y se denomina oocito (o huevo) y el otro es pequeño y móvil y se denomina espermatozoide. Durante la fase diploide que sigue a la fusión de gametos, las células proliferan y se diversifican formando un organismo pluricelular complejo.
2. GAMETOGÉNESIS
Gametogénesis es el proceso inclusivo por el cual células diploides experimentan meiosis para producir gametos haploides altamente diferenciados y especializados. Aunque la formación de gametos difiere en cada sexo el espermatozoide y el ovulo son homólogos e involucran transformaciones morfofisiológicas. Ciertamente el espermatozoide debe reconocer y acoplarse a componentes específicos de la zona pelucida del ovulo para que la fertilización ocurra
Página siguiente |