- Definición de Estadística
- Utilidad e importancia
- División de la Estadística
- Método para la recolección de datos
- Variable
La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilados a partir de otros datos numéricos.
Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.
"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.
Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.
"La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos". (Yale y Kendal, 1954).
Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee. Otros autores tienen definiciones de la Estadística semejantes a las anteriores, y algunos otros no tan semejantes. Para Chacón esta se define como "la ciencia que tiene por objeto el estudio cuantitativo de los colectivos"; otros la definen como la expresión cuantitativa del conocimiento dispuesta en forma adecuada para el escrutinio y análisis. La más aceptada, sin embargo, es la de Minguez, que define la Estadística como "La ciencia que tiene por objeto aplicar las leyes de la cantidad a los hechos sociales para medir su intensidad, deducir las leyes que los rigen y hacer su predicción próxima".
Los métodos estadísticos tradicionalmente se utilizan para propósitos descriptivos, para organizar y resumir datos numéricos. La estadística descriptiva, por ejemplo trata de la tabulación de datos, su presentación en forma gráfica o ilustrativa y el cálculo de medidas descriptivas.
Ahora bien, las técnicas estadísticas se aplican de manera amplia en mercadotecnia, contabilidad, control de calidad y en otras actividades; estudios de consumidores; análisis de resultados en deportes; administradores de instituciones; en la educación; organismos políticos; médicos; y por otras personas que intervienen en la toma de decisiones.
La Estadística para su mejor estudio se ha dividido en dos grandes ramas: la Estadística Descriptiva, la Inferencial e Inductiva.
Estadística Descriptiva: Tienen por objeto fundamental describir y analizar las características de un conjunto de datos, obteniéndose de esa manera conclusiones sobre las características de dicho conjunto y sobre las relaciones existentes con otras poblaciones, a fin de compararlas. No obstante puede no solo referirse a la observación de todos los elementos de una población (observación exhaustiva) sino también a la descripción de los elementos de una muestra (observación parcial).
En relación a la estadística descriptiva, Ernesto Rivas González dice; "Para el estudio de estas muestras, la estadística descriptiva nos provee de todos sus medidas; medidas que cuando quieran ser aplicadas al universo total, no tendrán la misma exactitud que tienen para la muestra, es decir al estimarse para el universo vendrá dada con cierto margen de error; esto significa que el valor de la medida calculada para la muestra, en el oscilará dentro de cierto límite de confianza, que casi siempre es de un 95 a 99% de los casos.
Estadística Inferencial: se deriva de muestras, de observaciones hechas sólo acerca de una parte de un conjunto numeroso de elementos y esto implica que su análisis requiere de generalizaciones que van más allá de los datos. Como consecuencia, la característica más importante del reciente crecimiento de la estadística ha sido un cambio en el énfasis de los métodos que describen a métodos que sirven para hacer generalizaciones. La Estadística Inferencial investiga o analiza una población partiendo de una muestra tomada. Según Berenson y Levine; Estadística Inferencial son procedimientos estadísticos que sirven para deducir o inferir algo acerca de un conjunto de datos numéricos (población), seleccionando un grupo menor de ellos (muestra). El objetivo de la inferencia en investigación científica y tecnológica radica en conocer clases numerosas de objetos, personas o eventos a partir de otras relativamente pequeñas compuestas por los mismos elementos.
En relación a la estadística descriptiva y la inferencial, Levin & Rubin (1996) citan los siguientes ejemplos para ayudar a entender la diferencia entre las dos.
Estadística Inductiva: Está fundamentada en los resultados obtenidos del análisis de una muestra de población, con el fin de inducir o inferir el comportamiento o característica de la población, de donde procede, por lo que recibe también el nombre de Inferencia estadística.
Método Estadístico: El conjunto de los métodos que se utilizan para medir las características de la información, para resumir los valores individuales, y para analizar los datos a fin de extraerles el máximo de información, es lo que se llama métodos estadísticos. Los métodos de análisis para la información cuantitativa se pueden dividir en los siguientes seis pasos:
1. Definición del problema.
2. Recopilación de la información existente.
3. Obtención de información original.
4. Clasificación.
5. Presentación.
6. Análisis.
Población: El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.
"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).
"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).
Muestra: "Se llama muestra a una parte de la población a estudiar que sirve para representarla". Murria R. Spiegel (1991).
"Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996).
"Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).
Muestreo: Esto no es más que el procedimiento empleado para obtener una o más muestras de una población; el muestreo es una técnica que sirve para obtener una o más muestras de población.
Este se realiza una vez que se ha establecido un marco muestral representativo de la población, se procede a la selección de los elementos de la muestra aunque hay muchos diseños de la muestra.
Al tomar varias muestras de una población, las estadísticas que calculamos para cada muestra no necesariamente serían iguales, y lo más probable es que variaran de una muestra a otra.
Tipos de muestreo
Existen dos métodos para seleccionar muestras de poblaciones; el muestreo no aleatorio o de juicio y el muestreo aleatorio o de probabilidad. En este último todos los elementos de la población tienen la oportunidad de ser escogidos en la muestra.
Una muestra seleccionada por muestreo de juicio se basa en la experiencia de alguien con la población. Algunas veces una muestra de juicio se usa como guía o muestra tentativa para decidir como tomar una muestra aleatoria más adelante. Las muestras de juicio evitan el análisis estadístico necesario para hacer muestras de probabilidad.
Datos estadísticos:
Los datos estadísticos no son otra cosa que el producto de las observaciones efectuadas en las personas y objetos en los cuales se produce el fenómeno que queremos estudiar. Dicho en otras palabras, son los antecedentes (en cifras) necesarios para llegar al conocimiento de un hecho o para reducir las consecuencias de este.
Los datos estadísticos se pueden encontrar de forma no ordenada, por lo que es muy difícil en general, obtener conclusiones de los datos presentados de esta manera. Para poder obtener una precisa y rápida información con propósitos de descripción o análisis, estos deben organizarse de una manera sistemática; es decir, se requiere que los datos sean clasificados. Esta clasificación u organización puede muy bien hacerse antes de la recopilación
Clasificación de los datos
Los datos estadísticos pueden ser clasificados en cualitativos, cuantitativos, cronológicos y geográficos.
Datos Cualitativos: cuando los datos son cuantitativos, la diferencia entre ellos es de clase y no de cantidad.
Datos cuantitativos: cuando los valores de los datos representan diferentes magnitudes, decimos que son datos cuantitativos.
Datos cronológicos: cuando los valores de los datos varían en diferentes instantes o períodos de tiempo, los datos son reconocidos como cronológicos.
Datos geográficos: cuando los datos están referidos a una localidad geográfica se dicen que son datos geográficos.
Fuentes de datos estadísticos
Los datos estadísticos necesarios para la comprensión de los hechos pueden obtenerse a través de fuentes primarias y fuentes secundarias.
Fuentes de datos primarias: es la persona o institución que ha recolectado directamente los datos.
Fuentes secundarias: son las publicaciones y trabajos hechos por personas o entidades que no han recolectado directamente la información.
Las fuentes primarias más confiables, son las efectuadas por oficinas gubernamentales encargadas de tal fin. En la práctica, es aconsejable utilizar fuentes de datos primarias y en última instancia cuando estas no existan, usar estadísticas de fuentes secundarias. Con este último tipo no debemos pasar por alto que la calidad de las conclusiones estadísticas depende en grado sumo de la exactitud de los datos que se recaben.
Método para la recolección de datos
En estadística se emplean una variedad de métodos distintos para obtener información de los que se desea investigar. Discutiremos aquí los métodos más importantes, incluyendo las ventajas y limitaciones de estos.
La entrevista personal: los datos estadísticos necesarios para una investigación, se reúnen frecuentemente mediante un proceso que consiste en enviar un entrevistador o agente, directamente a la persona investigada. El investigador efectuará a esta persona una serie de preguntas previamente escritas en un cuestionario boleta, donde anotará las respuestas correspondientes. Este procedimiento que se conoce con el nombre de entrevista personal, permite obtener una información más veraz y completa que la que proporcionan otros métodos, debido a que al tener contacto directo con la persona entrevistada, el entrevistador podrá aclarar cualquier duda que se presente sobre el cuestionario o investigación.
Cuestionarios por correo: consiste en enviar por correo el cuestionario acompañado por el instructivo necesario, dando en este no solo las instrucciones pertinentes para cada una de las preguntas, sino también una breve explicación del objeto de la encuesta con el fin de evitar interpretaciones erróneas.
Entrevista por teléfono: como lo indica su nombre, este método consiste en telefonear a la persona a entrevistar y hacerle una serie de preguntas. Este método es bastante simple y económico, ya que el entrenamiento y supervisión de las personas encargadas de efectuar las preguntas es siempre fácil.
Instrumentos para la recolección de datos:
Cuestionarios: Cualquiera que sea el método por el que se decida el investigador para recabar información, es necesario elaborar un estudio de preguntas. Los cuestionarios en general, constan de las siguientes partes:
a. La identificación del cuestionario: nombre del patrocinante de la encuesta, (oficial o privada), nombre de la encuesta, número del cuestionario, nombre del encuestador, lugar y fecha de la entrevista.
b. Datos de identificación y de carácter social del encuestado: apellidos, nombres, cédula de identidad, nacionalidad, sexo, edad o fecha de nacimiento, estado civil, grado de instrucción, ocupación actual, ingresos, etc.
c. Datos propios de la investigación, son los datos que interesa conocer para construir el propósito de la investigación. Estas partes, así como las preguntas, varían de acuerdo a la finalidad de la encuesta. En algunos tipos de investigación, la parte referente a los datos personales es eliminada por no tener ningún tipo de interés para el estudio.
La definición más sencilla, es la referida a la capacidad que tienen los objetos y las cosas de modificar su estado actual, es decir, de variar y asumir valores diferentes.
Sabino (1980) establece: "entendemos por variable cualquier característica o cualidad de la realidad que es susceptible de asumir diferentes valores, es decir, que puede variar, aunque para un objeto determinado que se considere puede tener un valor fijo".
Briones (1987: 34) define: "Una variable es una propiedad, característica o atributo que puede darse en ciertos sujetos o pueden darse en grados o modalidades diferentes. . . son conceptos clasificatorios que permiten ubicar a los individuos en categorías o clases y son susceptibles de identificación y medición".
CLASIFICACIÓN DE LAS VARIABLES
Variable Independiente: es aquella característica o propiedad que se supone ser la causa del fenómeno estudiado. En investigación experimental se llama así, a la variable que el investigador manipula.
Variable Dependiente: Hayman (1974: 69) la define como propiedad o característica que se trata de cambiar mediante la manipulación de la variable independiente. La variable dependiente es el factor que es observado y medido para determinar el efecto de la variable independiente.
Variable Interviniente: Son aquellas características o propiedades que de una manera u otra afectan el resultado que se espera y están vinculadas con las variables independientes y dependientes.
Variable Moderadora: Según Tuckman: representan un tipo especial de variable independiente, que es secundaria, y se selecciona con la finalidad de determinar si afecta la relación entre la variable independiente primaria y las variables dependientes.
Variables Cualitativas: Son aquellas que se refieren a atributos o cualidades de un fenómeno. Sabino (1989: 80) señala que sobre este tipo de variable no puede construirse una serie numérica definida.
Variable Cuantitativa: Son aquellas variables en las que características o propiedades pueden presentarse en diversos grados de intensidad, es decir, admiten una escala numérica de medición.
Variables Continuas: Son aquellas que pueden adoptar entre dos números puntos de referencias intermedio. Las calificaciones académicas (10.5, 14.6, 18.7, etc.)
Variables Discretas: Son aquellas que no admiten posiciones intermedias entre dos números. Ej., en Barinas la división de territorial la constituyen 11 municipios por no (10.5 u 11.5 municipios).
Variables de Control: Según Tuckman: La define como esos factores que son controlados por el investigador para eliminar o neutralizar cualquier efecto que podrían tener de otra manera en el fenómeno observado.
Operacionalización de la Variable:
Es un paso importante en el desarrollo de la investigación. Cuando se identifican las variables, el próximo paso es su operacionalización. Comprende tres tipos de definiciones:
Nominal: es el nombre de la variable que le interesa al investigador.
Real: consiste en determinar las dimensiones que contienen las variables nominales.
Operacional: o indicadores. Esta da la base para su medición y la definición de los indicadores que constituyen los elementos más concretos de una variable y de donde el investigador derivará los ítems o preguntas para el instrumento con que recolectará la información.
Autor:
Erika Josefina Sulbaran Silva
Trino Barrios
REPUBLICA BOLIVARIANA DE VENEZUELA
MINISTERIO DEL PODER POPULAR PARA LA EDUCACION SUPERIOR
UNIVERSIDAD BOLIVARIANA DE VENEZUELA
SEDE BOLIVAR
ESTADISTICA I
CIUDAD BOLIVAR, ENERO 2011