El matemático inglés George Boole nació el 2 de noviembre de 1815 en Lincoln y falleció el 8 de diciembre de 1864 en Ballintemple, Irlanda. Boole recluyó la lógica a una álgebra simple. También trabajó en ecuaciones diferenciales, el cálculo de diferencias finitas y métodos generales en probabilidad.
Introducción George Boole
Variable Lógica En general, el termino variable lógica o booleana, hace referencia a cualquier símbolo lineal A,B,….,Z empleado para representar dispositivos o magnitudes físicas que llenan solamente dos valores o estados, verdadero o falso, que son representados simbólicamente por 1 o 0 respectivamente.
Definición Las dos posiciones o estados abierto – cerrado de un contacto eléctrico se designan mediante los símbolos 0 (no corre electricidad) y 1 (hay electricidad) respectivamente.
Variable Lógica Debido a que el contacto esta abierto, no pasa corriente eléctrica por el cable.
Z= 0 quiere decir que tiene un valor lógico de cero, no pasa electricidad porque el pulsador esta en reposo (ninguna fuerza esta venciendo el resorte de retención). Pulsador Normalmente Abierto
Variable Lógica Ahora accionamos el pulsador (ya no esta más en reposo).
La corriente eléctrica recorre el cable, esto implica que Z = 1. Pulsador Normalmente Abierto
Variable Lógica Un contacto NC es el que se usa el las puertas de las heladeras o automóviles, que encienden una luz cuando deja de estar oprimido. El estado de reposo de un pulsador NC implica que Z=1.
Pulsador Normalmente Cerrado
Variable Lógica Al accionar el pulsador, deja de pasar corriente eléctrica por el cable.
Entonces Z toma el valor lógio cero. Pulsador Normalmente Cerrado
Función Lógica Una función lógica o booleana es una variable lógica cuyo valor es equivalente al de una expresión algebraica, constituida por otras variables lógicas relacionadas entre sí por medio de las operaciones suma lógica (+), y/ o producto lógico (·) y/o negador (-).
Las tres operaciones mencionadas son las operaciones básicas del álgebra de Boole, que darán lugar a las funciones básicas OR, AND y NEGACIÓN.
Definición
Función Lógica El valor de la expresión algebraica depende de los valores lógicos asignados a las variables que la constituyen, y de la realización de las operaciones indicadas.
Definición Por ejemplo, una suma lógica sería Z=A+B, donde Z tomará el valor cero o uno según los valores de A y B. Z tomará el valor cero sólamente cuando tanto A como B tengan el valor cero. Recordemos que: 0 + 0 = 0 1 + 0 = 1 0 + 1 = 1 1 + 1 = 1
Función Lógica Definición Un producto lógico sería Z = A · B, donde Z tomará el valor uno sólamente cuando tanto A como B tengan el valor uno. Recordemos que:
0 · 0 = 0 1 · 0 = 0 0 · 1 = 0 1 · 1 = 1 Una negación invierte el valor de las variables. Se representa con la variable (en este caso A) negada. Así: 0 = 1 1 = 0
Tabla de Verdad La tabla de verdad es una representación del comportamiento de una función lógica, dependiendo del valor particular que puedan tomar cada una de sus variables.
En ella deben figurar todas las combinaciones posibles entre las variables, y para cada una aparecera el valor de la función.
Definición
Tabla de Verdad 1 0 A Se tienen n variables y las tablas de verdad se construyen respondiendo a la expresión: El número de filas es igual a 2 elevado a la n.
21(variable) = 2 filas 22(variables) = 4 filas 1 y 2 variables 1 0 1 1 0 1 0 0 B A
Tabla de Verdad 23 variables = 8 filas 1 1 1 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 A B C
Compuertas Lógicas Cuando se desea cambiar el estado de una variable determinada se podría accionar una llave (compuerta) que realice este proceso.
Compuerta proviene de que este dispositivo puede usarse para permitir o no que el nivel que llega a un cable de entrada se repita en el cable de salida.
Lógica se debe a que una compuerta realiza electrónicamente una operación lógica, de forma tal de que a partir de una combinación de valores lógicos en las entradas, se obtiene un valor lógico (1 ó 0) en su salida.
Definición
Compuertas Lógicas Compuerta AND Una Compuerta AND de dos entradas es un dispositivo electrónico que posee dos entradas, a las que llegan los niveles de tensión de dos cables (A y B) y una salida (Z). Responde a la expresión: Z = A · B
Compuertas Lógicas Compuerta AND A · B = Z 0 ·0 = 0 0 0 0 1 1 1 0 0 1 0 1 0 0 0 0 Z B A 0 1 0 ·1 = 0 1 1 · 0 = 0 0 1 · 1 = 1 1 1
Circuito Lógico Compuerta AND Z = A · B También es posible representar la función lógica, su tabla de verdad y su compuerta con los pulsadores NC, formando un circuito lógico.
Circuito Lógico Compuerta AND Z = A · B La luminaria se enciende cuando A y B son pulsados al mismo tiempo. Esto coincide con la TV cuando A y B toman el valor 1, haciendo que Z valga 1. (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 0 (Gp:) 1 (Gp:) 0 (Gp:) 1 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) Z (Gp:) B (Gp:) A
Compuertas Lógicas Compuerta OR Una Compuerta OR de dos entradas es un dispositivo electrónico que posee dos entradas, a las que llegan los niveles de tensión de dos cables (A y B) y una salida (Z). Responde a la expresión: Z = A + B
Compuertas Lógicas Compuerta OR A + B = Z 0 + 0 = 0 0 1 1 1 1 0 1 1 1 0 0 0 0 Z B A 0 1 0 1 1 0 0 + 1 = 1 1 1 + 0 = 1 1 + 1 = 1
Circuito Lógico Compuerta OR Z = A + B La luminaria se enciende cuando A o B son pulsados. Esto coincide con la TV cuando A o B toman el valor 1, haciendo que Z valga 1. (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) Z (Gp:) B (Gp:) A
Compuertas Lógicas Compuerta SEGUIDOR Una Compuerta SEGUIDOR es un dispositivo electrónico que actúa como buffer: mantiene en la salida, el valor que se encuentra a la entrada. Responde a la expresión: Z = A
Compuertas Lógicas 1 1 0 0 Z A Compuerta SEGUIDOR A = Z 0 1 0 1 = 1 0 = 0 1
Circuito Lógico Compuerta SEGUIDOR Z = A La luminaria se enciende cuando A es pulsado. Esto coincide con la TV cuando A toma el valor 1, haciendo que Z valga 1. (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 0 (Gp:) Z (Gp:) A
Compuertas Lógicas Compuerta INVERSOR Una Compuerta INVERSOR es un dispositivo electrónico que enciende el cable que está en su salida, si el cable que está en su entrada se encuentra apagado, y viceversa. Puede decirse que uno es la negación del otro. Responde a la expresión:
Compuertas Lógicas Compuerta INVERSOR 0 1 1 0 Z A 0 = 1 1 0 1 = 0 1 0
Circuito Lógico Compuerta INVERSOR Z se activará si A toma el valor 0. Esto coincide con la TV cuando A toma el valor 0, haciendo que Z valga 1. (Gp:) 0 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) Z (Gp:) A
Compuertas Lógicas Compuerta EXOR Una compuerta EXOR u OR excluyente de dos entradas es un dispositivo electrónico que presenta dos entradas, a las que llegan los estados de las dos variables (A ? B), y una salida, que genera en el cable (Z). Responde a la expresión:
Compuertas Lógicas Compuerta EXOR 0 1 1 1 0 1 1 1 0 0 0 0 Z B A 0 0 ? 0 1 · 0 + 1 · 0 0 0 0 ? 1 1 · 1 + 0 · 0 0 1 1 1 ? 1 1 ? 0 0 1 1 0 · 0 + 1 · 1 0 · 1 + 0 · 1 1 1 0
Circuito Lógico Compuerta EXOR Z se activará si A o B se activan, pero no al mismo tiempo Esto se refleja en la TV cuando A o B estan activados. (Gp:) 0 (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 1 (Gp:) 1 (Gp:) 1 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) 0 (Gp:) Z (Gp:) B (Gp:) A
Pero cuando ambos se activan al mismo tiempo, Z vale 0.
Leyes de Algegra de Boole Algebra de circuitos lógicos El álgebra de Boole es una parte de la matemática que utiliza expresiones basadas en la lógica dual. Ley Conmutativa A + B = B + A
Ley Asociativa A + (B + C) = (A + B) + C
Ley Distributiva (del producto con respecto a la suma) A · (B + C) = A · B + A · C
Ley Distributiva (de la suma respecto del producto) C + B · A = (C + B) · (C + A)
Ley de Absorción Ley de Doble Negación Ley de Morgan Sirve para transformar sumas lógicas en productos lógicos Y productos lógicos en sumas lógicas Relaciones de Morgan
Compuertas Derivadas Compuerta NAND Una compuerta NAND resulta de invertir la salida de una compuerta AND. Compuerta AND Invertimos la salida (NAND) Negamos de ambos lados Por ley de doble neg. Por ley de Morgan Expresión Booleana
Compuertas Lógicas Compuerta NAND 0 0 1 1 1 0 1 1 1 0 1 0 0 Z B A 0 1 1 1 1 0 1 0
Circuito Lógico Compuerta NAND Z será igual a 0 sólo si A y B se presionan al mismo tiempo. Esto coincide con la TV cuando A y B son iguales a 1, haciendo que Z sea igual a 0.
Compuertas Derivadas Compuerta NOR Una compuerta NOR resulta de invertir la salida de una compuerta OR. Compuerta OR Invertimos la salida (NOR) Negamos de ambos lados Por ley de doble neg. Por ley de Morgan Expresión Booleana
Compuertas Lógicas Compuerta NOR 0 0 1 1 0 0 1 0 1 0 1 0 0 Z B A 0 1 1 1 1 0 0 0
Circuito Lógico Compuerta NOR Z será igual a 1 si A o B no se presionan en ningún momento Esto coincide con la TV cuando A y B son iguales a 0, haciendo que Z sea igual a 1.
Compuertas Derivadas Compuerta EX-NOR Una compuerta EX-NOR resulta de invertir la salida de una compuerta NOR. Compuerta NOR Invertimos la salida (EX-NOR) Negamos de ambos lados Por ley de Morgan Nuevamente Morgan Expresión Booleana Al distribuir nos queda: } } 0 0
Compuertas Lógicas Compuerta EX-NOR 0 1 1 1 0 0 1 0 1 0 1 0 0 Z B A 0 1 1 1 1 0 0 1
Circuito Lógico Compuerta EX-NOR Como siempre, la TV se corresponde con el circuito, la compueta y la expresión booleana.
Principio de Dualidad Cualquier propiedad en el álgebra de Boole sigue siendo valida si se intercambian las operaciones (+) y (·) y además se intercambian los valores 0 y 1.
Definición Equivalencia entre funciones: dos expresiones booleanas son equivalentes si tienen igual tabla de verdad. Una expresión lógica le corresponde una sola tabla de verdad, mientras que una tabla de verdad puede formarse algebraicamente mediante diversas funciones equivalentes.
Asimismo, circuitos lógicos que corresponden a expresiones algebraicas equivalentes tendrán la misma tabla de funcionamiento por lo que podrán reemplazarse unos por otros.
La equivalencia se obtiene aplicando el principio de dualidad. Ejemplo: A + 0 = A A · 1 = A
Circuitos Equivalentes Convertimos una suma de productos, en un producto negado de productos negados… Equivalencias And-Or Y Nand-Nand Z1 = A + B·C + D·E = A partir de un circuito determinado, su función equivalente puede ser obtenida de dos formas: Primer método Negamos ambos extremos del cable, que por la propiedad de la doble negación no afecta la función original. Aplicamos el concepto de funciones equivalentes en la última compuerta, obteniendo así todas NAND. Segundo método Aplicamos la equivalencia de funciones en la última compuerta: reemplazamos la compueta OR por su dual AND y negamos sus entradas y salidas que no están negadas en el circuito original. Como último paso, se desplazan las negaciones hacia el otro extremo del cable. De esta forma obtenemos un circuito compuesto por todas compuertas NAND.
Circuitos Equivalentes Equivalencias Or-And y Nor-Nor Z = (P + Q) · (R + S) · T = A partir de un circuito determinado, su función equivalente puede ser obtenida de dos formas: Primer método Negamos ambos extremos del cable, que por la propiedad de la doble negación no afecta la función original. Aplicamos el concepto de funciones equivalentes en la última compuerta, obteniendo así todas NOR. Segundo método Aplicamos la equivalencia de funciones en la última compuerta: reemplazamos la compueta AND por su dual OR y negamos sus entradas y salidas que no están negadas en el circuito original. Como último paso, se desplazan las negaciones hacia el otro extremo del cable. De esta forma obtenemos un circuito compuesto por todas compuertas NOR. De un producto de sumas se pasa a una suma negada, de sumas negadas.
Funciones Equivalentes Utilidad A una función lógica le corresponde una única tabla de verdad, mientras que a una misma tabla de verdad se le puede asociar diferentes expresiones equivalentes. Esto permite reemplazar un circuito por otro, según las necesidades técnicas y/o económicas que se posean. Más especificamente, la utilidad del concepto de funciones equivalente es la posibilidad de utilizar menor cantidad de chips para la implementación de un circuito. Si queremos implementar la función Z=(P+Q)·(R+S), deberíamos hacerlo: Entonces, una vez aplicado el concepto de funciones equivalentes y obtenida la expresión, la implementación de chips sería: La nueva expresión sería: De esta forma podemos ver que, a diferencia del primer caso, estamos utilizando sólo UN chip.
Compuertas Lógicas Comportamiento a) Las entradas están puenteadas.
Compuertas Lógicas Comportamiento b) Una de las entradas trabaja como señal de control.
Compuertas Lógicas Comportamiento c) La señal de salida realimenta a la de entrada.