231. Robie, R. A. and Hemingway, B. S., (1972). Calorimeters for Heat of Solution and Low-Temperature Heat Capacity Measurements. Washington DC: Government Printing Office, US Geological Survey Prof. Paper 755.
232. Robie, R. A., Hemingway, B. S., and Fisher, J. R., (1978). Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 bar (105 Pascals) Pressure and at Higher Temperatures. US Geological Survey Bulletin, 1452. Washington, DC: London.
233. Robinson, R. A. and Stokes, R. H., (1959). Electolyte Solutions, 2nd edition. Butterworths.
234. Rumble, D., (1982). The role of perfectly mobile components in metamorphism. Ann. Rev. Earth Planet. Sci.
235. Saha B.B., Boelman E.C. and Kashiwagi T., (1995). Computational analysis of an advanced adsorption-refrigeration cycle. Energy 20.
236. Saxena, S. K., (1973). Thermodynamics of Rock-forming Crystalline Solutions. New York: Springer-Verlag.
237. Schottky, W., (1929). Thermodynamik, in Gemeinschaft, ed. H. Ulich und C. Wagner. Berlin: Verlag von Julius Springer.
238. Sengers, J. V., Kayser, R. F., Peters, C. J., and White, H. J., Jr., eds., (2000). Equations of State for Fluids and Fluid Mixtures. Amsterdam: Elsevier Science B.V.
239. Sevigny, J. H. and Ghent, E. D., (1989). Pressure, temperature and fluid composition during amphibolite facies metamorphism of graphitic metapelites, Howard Ridge. British Columbia J. Metamorphic Petrol.
240. Shannon, C., (1949). The Mathematical Theory of Communication. Urbana, IIL: University of Illinois Press.
241. Singer, P. C. and Stumm, W., (1968). Acidic mine drainage: The rate-determining step. Science.
242. Smith, W. R. and Missen, R. W., (1982). Chemical Reaction Equilibrium Analysis: Theory and Algorithms. New York: Wiley.
243. Span, R., (2000). Multiparameter Equations of State. Berlin: Springer-Verlag.
244. Span, R., Lemmon, E. W., Jacobsen, R. T., Wagner, W., Yokozeki, A., (2000). A reference equation of state for the thermophysical properties of nitrogen for temperatures from 63.151 to 1000K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data.
245. Spear, F. S., (1995). Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington DC: Mineralogical Society of America. Spencer, J. N., 1973, _G and _G/__. J. Chem. Edu.
246. Spycher, N. F. and Reed, M. H., (1988). Fugacity coefficients of H2, CO2, CH4, H2O, and of H2O–CO2–CH4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling. Geochim. Et Cosmochim. Acta.
247. Steinmann, P., Lichtner, P. C., and Shotyk, W., (1994). Reaction path approach to mineral weathering reactions. Clays and Clay Minerals.
248. Stokes, R. H. and Robinson, R. A., (1948). Ionic hydration and activity in electrolyte solutions. J. Amer. Chem. Soc.
249. Stryjek, R. and Vera, J. H., (1986a). PRSV – An improved Peng–Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Engng.
250. Stoecker W.F. and Jones J.W., (1982). Refrigeration and Air Conditioning. 2nd edition. McGraw-Hill, Singapore.
251. Summerer F., (1996). Evaluation of absorption cycles with respect to COP and economics. Int. J. Refrig.
252. Swift G.W., (1988). Thermo acoustic engines. J. Acoust. Soc. Am. 84.
253. Taniguchi, F. et al (1996). The development of ammonia-water absorption chiller with GAX. Proc. of the 30th Japanese Joint Conf. on Refrigeration and Air-conditioning. Paper No. 40. Tokyo, Japan.
254. Toyo Carrier Engineering Co. (1989). 38PE 40HQ AQ TQ split system cooling units, 50 Hz, cooling 18.6-130.2 kW. Publication ECR9105-1(S). Tokyo, Japan.
255. Toyo Carrier Engineering Co. (1991). 30 HKA HK HR packaged hermetic reciprocating chillers, 50 Hz, 45.4 to 461 kW, 15 to 160 tons. Publication EPD9107-1(S). Tokyo, Japan.
256. Trane Co. (1989). Single stage absorption cold generator: 101 to 1660 tons. Catalog ABS-DS-1. La Crosse, WI.
257. Trane Co. (1990). Cold generator reciprocating liquid chillers: 70 to 120 tons water-cooled and condenserless. Catalog CG-DS-4, Publication PL-RFCG-000-DS-4-690. La Crosse, WI.
258. Trane Co. (1992). Air cooled reciprocating liquid chillers, series CGAV 330 kW through 1180 kW. Societé Trane Publication C47SD603E-0892. Golbey, France.
259. Trane Co. (1996). Refrigeration data catalog for CenTraVac liquid (watercooled) chiller, CTV-DS-15-296. LaCrosse, WI, USA.
260. Tu K., (1997). Waste-heat powered absorption chillers: theoretical modelling. M. Eng. thesis, Department of Mechanical & Production Engineering, National University of Singapore.
261. Walas, S. M., (1985). Phase Equilibria in Chemical Engineering. London: Butterworth.
262. Waldbaum, D. R. and Thompson, J. B., Jr., (1968). Mixing properties of sanidine crystalline solutions: II. Calculations based on volume data. Amer. Mineralogist.
263. 1969, Mixing properties of sanidine crystalline solutions: IV. Phase diagrams from equations of state. Amer. Mineralogist.
264. Weare, J. H., (1987). Models of mineral solubility in concentrated brines with application to field observations, in: I. S. E. Carmichael and H. P. Eugster, eds., Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts, Reviews in Mineralogy, vol. 17. Washington DC: Mineralogical Society of America.
265. Weinreich, G., (1968). Fundamental Thermodynamics. Reading, MA: Addison-Wesley Publishing Co.
266. Wetzel M. and Herman C., (1997). Design optimization of thermoacoustic refrigerators. Int. J. Refrig.
267. Wilks, J., (1961). The Third Law of Thermodynamics. Oxford: Oxford University Press.
268. Williamson, M. A. and Rimstidt, J. D., (1994). The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim. et Cosmochim. Acta.
269. Wolery, T. J., (1979). Calculation of Chemical Equilibrium between Aqueous Solution and Minerals. The EQ3/6 Software Package. Livermore, CA Lawrence Livermore National Lab.
270. 1983, EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations. User"s Guide and Documentation. Livermore, CA Lawrence Livermore National, Lab.
271. Wolery, T. J. and Jackson, K. J., (1990). Activity coefficients in aqueous salt solutions. Hydration theory equations, in: (eds., D. C. Melchior and R. L. Bassett). Chemical Modeling of Aqueous Systems II. ACS Symposium Series 416. Washington, DC: American Chemical Society.
272. Wood, B. J. and Nicholls, J., (1978). The thermodynamic properties of reciprocal solid solutions. Contrib. Mineral.
273. Wood, R. H., (1989). Flow calorimetry and densitometry at high temperatures. Thermochimica Acta.
274. Wood, S. A. and Samson, I. M., (1998). Solubility of ore minerals and complexation of ore metals in hydrothermal solutions, in: J. P. Richards and P. B. Larson, eds., Techniques in Hydrothermal Ore Deposits Geology. Reviews in Economic Geology, vol. 10. El Paso, TX: Economic Geology Publishing Co.
275. Wood, S. A. and Spera, F. J., (1984). Adiabatic decompression of aqueous solutions: Applications to hydrothermal fluid migration in the crust. Geology.
276. Wooley, H. W., (1980). Thermodynamic properties for H2O in the ideal gas state, in: Water and Steam – Their Properties and Current Industrial Applications. Proceedings of the 9th International Conference on the Properties of Steam, J. Straub and K. Scheffler, eds., Oxford: Pergamon.
277. Yazaki Resources Co. (1979). Installation and Service Manual, WFC-600 Model. Shizuoka-ken, Japan.
278. Zhu, C. and Anderson, G. M., (2002). Environmental Applications of Geochemical Modeling. Cambridge: Cambridge University Press.
279. Zimmerman, G. H., Gruszkiewicz, M. S., and Wood, R. H., (1995). New apparatus for conductance measurements at high temperatures: conductance of aqueous solutions of LiCl, NaCl, NaBr, and CsBr at 28 Mpa and water densities from 700 to 260 kgm-3. J. Chem. Phys.
280. Ziegler B. and Trepp Ch., (1984). Equation of state for ammonia-water mixtures. Int. J. Refrig.
281. Zhou C.Z. and Machielsen C.H.M., (1996). Performance of high-temperature absorption heat transformers using alkitrate as the working pair. Appl. Thermal Eng.
Autor:
Tungu Silvain
FECHA: 2014/04/15
LUGAR: ANGOLA
ATLANTIC INTERNATIONAL UNIVERSITY
Página anterior | Volver al principio del trabajo | Página siguiente |