Guías de onda La primera guía de onda fue propuesta por Joseph John Thomson en 1893 y experimentalmente verificada por O. J. Lodge en 1894. El análisis matemático de los modos de propagación de un cilindro metálico hueco fue realizado por primera vez por Lord Rayleigh en 1897.
Guías de onda Las guías de onda se basan en el confinamiento de la luz, efecto que se logra mediante el uso de dos medios con índice de refracción diferente. El medio con índice de refracción menor (núcleo) se embebe en el medio con índice de refracción mayor (revestimiento o cubierta); la luz queda confinada en el medio el núcleo debido a reflexión total interna. La geometría de las guías de onda puede ser plana (slab, strip) o cilíndrica, siendo esta última la más utilizada (fibras ópticas).
Algunos sistemas de telecomunicaciones utilizan la propagación de ondas en el espacio libre, sin embargo también se puede transmitir información mediante el confinamiento de las ondas en cables o guías. En altas frecuencias las líneas de transmisión y los cables coaxiales presentan atenuaciones muy elevadas por lo que impiden que la transmisión de la información sea la adecuada, son imprácticos para aplicaciones en HF(alta frecuencia) o de bajo consumo de potencia, especialmente en el caso de las señales cuyas longitudes de onda son del orden de centímetros, esto es, microondas.
Guías de onda
Microondas La transmisión de señales por guías de onda reduce la disipación de energía, es por ello que se utilizan en las frecuencias denominadas de microondas con el mismo propósito que las líneas de transmisión en frecuencias más bajas, ya que se presentan poca atenuación para el manejo de señales de alta frecuencia. Este nombre, se utiliza para designar los tubos de un material de sección rectangular, circular o elíptica, en los cuales la energía electromagnética ha de ser conducida principalmente a lo largo de la guía y limitada en sus fronteras.
Las paredes conductoras del tubo confinan la onda al interior por reflexión, debido a la ley de Snell en la superficie, donde el tubo puede estar vacío o relleno con un dieléctrico. En las guías, los campos eléctricos y los campos magnéticos están confinados en el espacio que se encuentra en su interior, de este modo no hay pérdidas de potencia por radiación y las pérdidas en el dieléctrico son muy bajas debido a que suele ser aire. Este sistema evita que existan interferencias en el campo por otros objetos. Microondas
Guías de onda
Guías de onda Guías de onda planas Las guías de onda plana con geometría rectangular son las más utilizadas en dispositivos de óptica integrado; para el análisis de la propagación de una onda, es conveniente iniciar considerando una guía de onda formada con dos espejos planos.
Guías de onda Modos en la guía de onda. Muchos efectos importantes en esta guía de onda no son explicados por la óptica de rayos. Para considerar estos efectos podemos asociar a cada rayo una onda electromagnética plana transversal (TEM). El campo electromagnético total será entonces la suma de todas estas ondas.
Guías de onda Parámetros:
Longitud de onda
Numero de onda
Velocidad de fase
Guías de onda La polarización de la onda no cambia en cada reflexión, además, cada vez que se refleja, la onda sufre un cambio de fase de p. Esto asegura la condición de frontera de que la suma de cada onda y su propia reflexión sea cero para que el campo total en el espejo sea nulo. Para obtener los modos de propagación en la guía de onda se utiliza la condición de auto consistencia. Esta establece que después de reflejarse dos veces, la onda debe reproducirse a si misma.
Guías de onda Utilizando la óptica geométrica puede demostrarse que la relación de fase para la condición de auto consistencia está dada por: Los ángulos de rebote que satisfacen esta condición son entonces:
Guías de onda Una onda guiada tendrá vectores de propagación con componentes (0, ky, kz) y (0, – ky, kz) y la variación en la dirección z tendrá entonces la forma exp(- j kz z). Las constantes de propagación son entonces:
Guías de onda Utilizando la condición de auto consistencia obtenemos entonces los valores de las constantes de propagación de los modos:
De aquí notamos que los modos de alto orden viajan con constantes de propagación menores.
Guías de onda Distribuciones de Campo Utilizando la condición de auto consistencia, podemos escribir la amplitud compleja del campo como:
Página siguiente |