1 INFORMACION, MENSAJE Y SEÑAL ¿Qué es la Información? El mensaje es la manifestación física de la información producida por una fuente La señal es la materialización física del mensaje.
2 SEÑALES Las Señales son las manifestaciones físicas de procesos naturales o artificiales de muy diferentes naturaleza. Características comunes: Son función de una o mas variables independientes. Contienen información acerca del comportamiento o la naturaleza del fenómeno físico en cuestión.
3 INTRODUCCIÓN El Proceso Digital de Señales trata de la representación de señales por secuencias de números y el posterior proceso de tales secuencias. Objetivos: 1) Estimar los parámetros característicos de la señal. 2) Transformar la señal en otra. Aplicaciones: Ingeniería Biomédica Telecomunicaciones Acústica, Sonar, Radar Física Nuclear Sismología Proceso Digital de Imágenes
4 INTRODUCCIÓN SEÑAL: Es una función que contiene información sobre el estado ó comportamiento de un sistema físico. Según el rango de variabilidad de la variable independiente, la señal puede ser: 1) Contínua en el tiempo f(t), t ? [a,b] 2) Discreta en el tiempo: f(t) ? {t0,t1,…,tn} Según el rango de variabilidad de la amplitud, la señal puede ser: 1) Contínua en amplitud 2) Discreta en amplitud Las Señales Digitales son discretas en tiempo y en amplitud.
5 INTRODUCCIÓN DESCRIPCION DE SEÑALES EN EL DOMINIO TEMPORAL Valor Medio (en un intervalo T): Valor Medio Temporal: Valor Medio Cuadrático: Varianza:
6 SEÑALES DISCRETAS ELEMENTALES Las señales discretas se caracterizan por estar definidas solamente para un conjunto numerable de valores de la variable independiente. Se representan matemáticamente por secuencias numéricas. En la práctica suelen provenir de un muestreo periódico de una señal analógica. Las señales digitales se obtienen a partir de la cuantización de las señales discretas resultantes del muestreo de las señales analógicas. , siendo T el periodo de muestreo
7 SEÑALES DISCRETAS ELEMENTALES SECUENCIAS DISCRETAS ELEMENTALES Impulso unitario discreto d(n)=1 si n=0, d(n)=0 Si n<0 Escalón unitario discreto: u(n)=1 (Si n=0) , u(n)=0 (Si n<0) Propiedades: 1) d(n)=x(0) d(n) 3) 2) d(n)=u(n)-u(n-1) 4)
8 x(n) = ejwn = cos(wn) + jsen(wn) El conjunto de todos los valores distintos que esta secuencia discreta puede adoptar se encuentran en el intervalo [-p ,p]. SECUENCIA COMPLEJA EXPONENCIAL SEÑALES DISCRETAS ELEMENTALES
9 Las secuencias exponenciales complejas (y sinusoidales) no son necesariamente periódicas (con periodo T=2p /w), sino que la condición de periodicidad es: wN=2p k, siendo k un entero Hay N frecuencias distinguibles para las cuales las secuencias correspondientes son periódicas con periodo N. Este conjunto de frecuencias es: wk=2p k/N siendo k=0,1,2…N-1 SECUENCIA COMPLEJA EXPONENCIAL SEÑALES DISCRETAS ELEMENTALES
10 Señales de Energia: Son señales que tienen energia finita, por lo que son limitadas en tiempo. Se define la energía como : E = ? |x(n)|? Señales de Potencia: Se describen en términos de potencia las señales Periódicas, o Aleatorias estacionarias o no limitadas en t. Se define la potencia como: CLASIFICACIÓN DE SEÑALES DISCRETAS SEÑALES DISCRETAS ELEMENTALES
11 SEÑALES DISCRETAS ELEMENTALES Las señales discretas pueden clasificarse del siguiente modo: CLASIFICACIÓN DE SEÑALES DISCRETAS
12 OPERACIONES ELEMENTALES Suma de secuencias: y(n)=x1(n)+x2(n) Multiplicación de secuencias: y(n)=x1(n)x2(n) Adición escalar: y(n)=x(n)+a Multiplicación por una constante: y(n)= a x(n) Desplazamiento temporal: n-k ——-> y(n-k) Inversión: -n ——-> y(-n)
13 OPERACIONES ELEMENTALES Secuencia par: x(-n)=x(n) Secuencia impar: x(-n)=-x(n) Toda secuencia arbitraria puede expresarse como la suma de dos componentes, una de las cuales es par y la otra impar: x(n)=xe(n)+xo(n) PROPIEDADES DE SIMETRÍA
14 Sistemas lineales discretos
15 Un Sistema es un modelo matemático ó abstracción de un proceso físico que relaciona entradas y salidas según alguna regla preestablecida. Consideraremos sistemas que procesan señales discretas, es decir que reciben en sus entradas sucesiones de números y entregan en sus salidas otras sucesiones:
16 SISTEMAS LINEALES INVARIANTES EN EL TIEMPO Sistemas Lineales Son aquellos que verifican el principio de superposición: Homogeneidad: Un cambio en la amplitud de la señal de entrada, provoca el mismo cambio de amplitud en la señal de salida. Aditividad : La respuesta a la suma de dos señales es la suma de las respuestas a cda una de las señales.
17 SISTEMAS LINEALES INVARIANTES EN EL TIEMPO La invariancia en el tiempo significa que si ante una señal x(k) se obtiene una respuesta y(k), entonces ante x(k + n) se tendrá una respuesta y(k + n).
18 SISTEMAS LINEALES INVARIANTES EN EL TIEMPO Sistema causal: y(n)=T[x(-?),…,x(n-1),x(n)] Sistema causal de memoria finita: y(n)=T[x(n-N),…,x(n-1),x(n)] Sistema Invariante en el tiempo: y(n-m)=T[x(n-m)] En general: y(n)=T[x(-?),…,x(n-1),x(n), x(n+1),…,x(?)]
19 SISTEMAS LINEALES INVARIANTES EN EL TIEMPO Sistemas Invertibles: Si distintas entradas dan lugar a distintas salidas En el caso de sistemas LIT: h(n) * h1(n)=d (n)
20 INTERACCION SEÑAL-SISTEMA
21 Si excitamos un sistema discreto con un pulso unitario d (n) obtendremos una respuesta h(m) denominada respuesta al impulso. Respuesta Impulsional
22 ? En general: y[n?=T[x(n)?; ?Por otro lado: ? Por linealidad: ? Por Definición: h(n) = T[?(n)? Respuesta Impulsional del Sistema ? Por Invarianza: h(n-k) = T[?(n-k)? Suma de Convolución
23 SISTEMAS ESTABLES ? Un Sistema DLI es ESTABLE, si para una entrada acotada, la salida está acotada: ?x(n)? ? M ? ?y(n)? ? N, para M,N finitos ? Por definición: ? Luego, el sistema es estable si está acotado: ?Si un Sistema DLI, es causal: y(n)=T[x(-? ),…,x(n)?
24 SISTEMAS LINEALES INVARIANTES EN EL TIEMPO SISTEMAS DISCRETOS SISTEMAS CONTINUOS Suma de Convolución Integral de Convolución
25 ECUACIONES EN DIFERENCIAS Los sistemas contínuos : Ecuaciones Diferenciales Lineales con coeficientes constantes . Los sistemas discretos: Ecuaciones en diferencias lineales de coeficientes constantes. Expresión Recursiva
26 ECUACIONES EN DIFERENCIAS Caso Particular Describe un sistema LIT, en el que: h(n) = bn/a0 si 0£ n£ M ——-> FILTROS FIR h(n) = 0 en otro caso Las ecuaciones en diferencias pueden representarse graficamente definiendo los siguientes bloques: Expresión no Recursiva
27 Casos particulares SISTEMA CAUSAL FIR IIR