NORMAS Y MARCO LEGAL
Las normas proporcionan los límites de diseño que se deben satisfacer y explican cómo los sistemas de puesta a tierra se pueden diseñar para ajustarse a ellos. Los sistemas de puesta a tierra deben ser diseñados para asegurarse que, durante una falla a tierra, los potenciales tanto en el terreno como en los conductores conectados al electrodo de tierra o en los conductores expuestos en la cercanía, estén dentro de los límites apropiados.
1.2.- DISPOSICIONES INTERNACIONALES. En el ámbito internacional, es muy conocido y empleado el grupo de estándares del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE – Institute of Electrical an Electronics Engineers) a) Sistemas de Puesta a Tierra. ANSI / IEEE Std. 81: 1983, Guía para la medición de Resistencias de Tierra, Impedancias de Tierra y Potenciales de Superficie de Tierra en Sistemas de Aterramiento.
b)Instalaciones domiciliarias, comerciales e industriales. ANSI C114.1-1973 / IEEE Standard 142-1972 IEEE Práctica Recomendada para Aterramientos de Sistemas de Potencia Industriales y Comerciales. c) Subestaciones eléctricas de media y alta tensión ANSI / IEEE Standard 80-1986 IEEE Guía para Seguridad en Aterramientos de subestaciones AC. d) Directivas CCITT Involucran, principalmente, interferencias electromagnéticas en cables, generadas por sistemas de potencia y rieles electrificados.
METODO DE PUESTA DE TIERRA proporcionar un camino definido de regreso a la fuente de energía y con impedancia suficientemente baja, vía los conductores de tierra, de tal modo que ante el evento de una falla a tierra de un conductor activo, fluya por una ruta predeterminada una corriente suficiente, que permita operar al dispositivo de protección del circuito. limitar a un valor seguro la elevación de potencial en todas las estructuras metálicas a las cuales tienen normalmente acceso personas y animales, bajo condiciones normales y anormales del circuito.
2.1 Puesta a tierra de sistemas de bajo voltaje El principio subyacente es tomar primero todas las precauciones razonables para evitar un contacto directo con las partes eléctricas vivas y, en segundo lugar; proporcionar medidas de protección contra contactos indirectos. Esto último implica puesta a tierra, conexión equipotencial efectiva y un sistema de protección que remueva la condición de falla.
MEDICION DE RESISTIVIDAD DELTERRENO La resistividad del terreno es de importancia decisiva en el diseño de una puesta a tierra y la única forma de conocerla con exactitud es mediante medidas directas de campo. Se considera al terreno formado por capas o estratos homogéneos, de resistividad uniforme y espesor fijo.
CONDUCTORES DE TIERRA los conductores de protección (o de conexión) los electrodos de tierra
Conductor de protección de circuito Es un conductor separado instalado con cada circuito y está presente para asegurar que parte o toda la corriente de falla regrese a la fuente a través de él. Puede ser un conductor individual, la cubierta metálica exterior de un cable o la estructura de un ducto metálico.
Electrodos de tierra El electrodo de tierra es el componente del sistema de puesta a tierra que está en contacto directo con el terreno y así proporciona un medio para botar o recoger cualquier tipo de corrientes de fuga a tierra.
TIPO DE MANTENIMIENTO Todos los tipos de instalaciones deben ser objeto de dos tipos de mantenimiento: Inspección a intervalos frecuentes de aquellas componentes que son accesibles o que pueden fácilmente hacerse accesibles. Examen, incluyendo una inspección rigurosa y, posiblemente prueba.