
Comparación de los distintas normas(1)
Comparación de los distintas normas(2)
Nivel físico en 802.11 Infrarrojos: solo válido en distancias muy cortas y en la misma habitación( histórico ) Radio: Espectro expandido por salto de frecuencia FHSS (Frequency Hoping Spread Spectrum): Sistema de bajo rendimiento, muy poco utilizado actualmente. Espectro expandido por secuencia directa DSSS (Direct Sequence Spread Spectrum). Multiplexacion por división de Frecuencia Ortogonal OFDM (Orthogonal Frequency Division Multiplexing).
Configuraciones Típicas Infraestructura Consiste de al menos un Access Point (AP) Basic Service Set (BSS) – Un AP provee la funcion de un puente( bridge) local para BSS. Todas las estaciones se comunican con con el PA y no directamente entre ellas . Las tramas son retransmitidas entre las estaciones Wi-Fi por el AP.
Configuraciones Típicas (cont.) Extended Service Set (ESS) – Un ESS es un conjunto de BSSs, donde los APs se comunican entre ellos para forwardear el tráfico desde una BSS a otra. Facilidad el movimiento de una estación Wi-Fi entre BSS.
Configuraciones Típicas (cont.) Ad Hoc Las estaciones inalámbricas se comunican directamente entre sí. Cada estación puede no ser capaz de comunicarse con cualquier otra estación debido a las limitaciones rango (utilizando wireless routing protocol).
“sui generis” Mediante antenas con ganancias mayores a la permitida por la norma , amplificadores y torres , es una infraestructura utilizada en muchas zonas suburbanas y rurales del país por ISPs,
Acceso al Medio Con un enfoque simplista podriamos pensar en usar CSMA/CD para usar una LAN inalámbrica (WLAN). El problema es que este protocolo es inadecuado por que lo que importa es la interferencia en el receptor y no en el transmisor .
Problema de la estación oculta Primero considere lo que ocurre cuando A transmite a B. Si C detecta el medio no escuchará a A porque está fuera de su alcance, y por lo tanto deducirá erróneamente que puede transmitir. Si C comienza a transmitir, interferirá en B eliminando el marco de A. El problema de que una estación no puede detectar a un competidor potencial por el medio, puesto que el competidor esta demasiado lejos, se denomina problema de la estación oculta.
Problema de la estación expuesta Ahora consideremos la situación inversa: B transmite a A. Si C detecta el medio, escuchará una transmisión y concluirá que no puede enviar a D. Cuando de hecho tal transmisión causaría una mala recepción solo en la zona entre B y C, en la que no está localizado ninguno de los receptores pretendidos. Esta situación se conoce como problema de estación expuesta
En resumen : El problema es que antes de comenzar una transmisión se quiere saber si hay ó no actividad en las cercanías del receptor y no alrededor del transmisor.
Antecedentes MACA [Karn1990] MACAW [1994]
MACA MACA (Múltiple Access Collision Avoidance) se usó como base para el 802.11. El concepto en que se basa es que, el transmisor estimula al receptor a enviar una trama corta, de manera que las estaciones cercanas puedan detectar esta transmisión y eviten ellas mismas de hacerlo durante la trama siguiente de datos.
MACA [Karn1990] A comienza por enviar una trama RTS (Request to Send) a B. Esta trama corta (30 bytes) contiene la longitud de trama de datos que seguirá posteriormente. Entonces B contesta con una trama CTS (Clear to send). La trama contiene la longitud de los datos (copiado de la trama RTS). A la recepción de la trama CTS, A comienza a transmitir.
MACA Cualquier estación que escuche el RTS está lo suficientemente cerca de A y debe permanecer en silencio durante el tiempo suficiente para que el CTS se transmita de regreso a A sin conflicto. Cualquier estación que escuche el CTS evidentemente está lo suficientemente cerca de B y debe permanecer en silencio durante el siguiente tiempo de transmisión de datos, cuya longitud puede determinar examinando el marco CTS.
MACA A pesar de estas precauciones, aún pueden ocurrir colisiones. Por ejemplo B y C pueden enviar tramas RTS a A al mismo tiempo. En el caso de una colisión, un transmisor sin éxito (es decir uno que no escucha un CTS en la ranura de tiempo esperado) espera un tiempo aleatorio y reintenta.
MACAW [1994] Agregando un ACK tras cada trama de datos exitoso. Agregando la detección de portadora (CSMA/CA) Ejecutando el algoritmo de retroceso por separado para cada corriente de datos, en lugar de para cada estación. Agregando mecanismo para que las estaciones intercambien información sobre congestionamientos. el algoritmo de retroceso reaccione menos violentamente a problemas pasajeros
Wireless LAN MAC Protocol Resumiendo las causas por las cuales no podemos utilizar el mecanismo Collision Detection (CD) en una wireless LAN. Requiere la implementación de un radio full duplex que incrementa los costos significativamente No todas las estaciones pueden “escucharse” una con otras en un ambiente wireless (que todos “escuchan” es la premisa de CD ).
Wireless LAN MAC protocol (cont.)
IEEE 802.11 (Gp:) Point Coordination Function (Gp:) Distributed Coordination Function (CSMA-CA) (Gp:) Contention Free Service (Gp:) Contention Service (Gp:) Nivel de MAC IEEE 802.11 (Gp:) Physical Layer
IEEE 802.11 MAC layer define dos métodos de acceso, Distributed Coordination Function (DCF) el cual es el mecanismo base y Point Coordination Function (PCF) opcional
DCF MAC DCF MAC parte de IEEE 802.11 esta basado CSMA-CA con rotación de backoff window . Escucha el canal , si esta libre TX Si esta ocupado esera hasta que finalice la TX mas un periodo de contencion es cual es un tiempo random que asegura un acceso al medio equitativo (fairness) Contention period se cuantifica mediante un back-off counter => Cuando un nodo recibe un frame para TX, este elige un valor random backoff , el cual determina cuanto tiempo el nodo debe esperar hasta que esta permitido TX el frame. El nodo almacena este valor de backoff en un backoff counter. La probabilidad que dos nodos elijan el mismo factor de backoff es pequeña con la cual las colisiones entre tramas se minimizan.
DCF MAC (cont.) : backoff counter
DCF MAC (cont.): La ventana de contención Mientras el canal esta libre el nodo decrementa el backoff counter ( caso contrario se mantiene) .Si backoff counter= 0 => el nodo TX el frame. Si la TX no es exitosa – no ACK, la ventana de contención (contention window), se selecciona de una intervalo random que es el doble del intervalo previo , este proceso se repite hasta que el canal esta libre
Resumen: Evolución en el tiempo sin colisión SIFS (short interframe space): 10 µs Slot Time: 20 µs DIFS (distributed interframe space): 50 µs ? DIFS = SIFS + 2 × slot time BO: variable back-off (dentro de una CW) ? CWmin: 31; CWmax: 102
Protocolo MAC IEEE 802.11: CSMA/CA 802.11 CSMA: emisor – Si detecta el canal vacío por DISF segundos, entonces transmite la trama completa (sin detección de colisión). -Si detecta el canal ocupado entonces backoff binario 802.11 CSMA receptor – Si se recibe bien vuelve a ACK tras SIFS (ACK es necesario por el problema del terminal oculto). Fuente Destino Otros datos NAV: retrasa el acceso
Mecanismos para evitar la colisión Problema: Dos nodos, ocultos el uno del otro, transmiten TRAMAS completas a la estación base. ¡Ancho de banda desperdiciado durante mucho tiempo! Solución: Pequeños paquetes de reserva. Intervalos de reserva de camino de nodo con vector de reserva de red (NAV) interno.
Evitar la colisión: Intercambio RTS-CTS El emisor transmite paquetes RTS (request to send) cortos: indica la duración de la transmisión. El receptor responde con paquetes CTS (clear to send) cortos. Notificando nodos (posiblemente ocultos). Los nodos ocultos no transmitirán por una duración determinada: NAV. Fuente Destino Otros Datos NAV: retrasa el acceso
Evitar colisión: intercambio RTS-CTS RTS y CTS cortos: Colisiones menos probables y de menor duración. Resultado final similar a la detección de colisión IEEE 802.11 permite: CSMA. CSMA/CA: reservas. Elegir desde AP.
Datos Fuente Destino Otros NAV: retrasa el acceso
CSMA/CA con la extension RTS/CTS t SIFS DIFS data ACK defer access other stations receiver sender data DIFS RTS CTS SIFS SIFS NAV (RTS) NAV (CTS) Virtual Carrier Sensing: 4-way handshake (RTS, CTS, DATA, ACK) Contention window
Eficiencia : raw data !!!!! La tabla nos presenta data rates a N1 para IEEE 802.11a/g con codificación convolucional “convolutional coding.” Esos números son “raw rates” y el throughput de es de alrededor de 28 Mbps para 54Mbps (46% de eficiencia), [64QAM y 3/4 coding rate en un ancho de banda de 20-MHz].
Página siguiente |