Descargar

Análisis de flujos metabólicos como herramienta para la evaluación de fenotipos industriales (página 2)

Enviado por juanita rosales perez


Partes: 1, 2

30. Perrenoud A, Sauer U, 2005. Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187: 3171-3179.

31. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wüthrich K, 1997. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15: 448-452.

32. Schmidt K, Carlsen M, Nielsen J, Villadsen J, 1997. Modelling isotopomer distribution in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55: 831-840.

33. Shirai T, Nakato A, Izutani N, Nagahisa K, Shioya S, Kimura E, Kawarabayasi Y, Yamagishi A, Gojobori T, Shimizu H, 2005. Comparative study of flux redistribution of metabolic pathway in glutamate production by two coryneform bacteria. Metab. Eng. 7: 59-69.

34. Soga T, 2007. Capillary electrophoresis-mass spectrometry for metabolomics. Methods Mol. Biol. 358: 129-137.

35. Stephanopoulos G, Aristidou AA, Nielsen J, Metabolic engineering: principles and methodologies. San Diego, CA, Academic Press, 1998.

36. Vallino JJ, Stephanopoulos G, 1993. Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633-646.

37. van Winden W, Verheijen P, Heijnen S, 2001. Possible pitfalls of flux calculations based on 13C-labeling. Metab. Eng. 3: 151-162.

38. Varma A, Palsson BO, 1994. Metabolic flux balancing: basic concepts, scientific and practical use. Bio/Technology 12: 994-998.

39. Vertès AA, Inui M, Yukawa H, 2008. Technological options for biological fuel ethanol. J. Mol. Microbiol. Biotechnol. 15: 16-30.

40. Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R, 2004. Serial 13C-based flux analysis of an L-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol. Prog. 20: 706-714.

41. Wiechert W, 2001. 13C Metabolic flux analysis. Metab. Eng. 3: 195-206.

42. Wiechert W, Möllney M, Isermann N, Wurzel M, de Graaf AA, 1999. Bidirectional reaction steps in metabolic networks. Part III: Explicit solution and analysis of isotopomer labeling systems. Biotechnol. Bioeng. 66: 69-85.

43. Wiechert W, Möllney M, Petersen S, de Graaf AA, 2001. A universal framework for 13C metabolic flux analysis. Metab. Eng. 3: 265-283.

44. Wittmann C, Heinzle E, 1999. Mass spectrometry for metabolic flux analysis. Biotechnol. Bioeng. 62: 739-750.

45. Yang TH, Wittmann C, Heinzle E, 2006. Respirometric 13C flux analysis. Part II: In vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab. Eng. 8: 432-446.

46. Zamboni N, Fischer E, Muffler A, Wyss M, Hohmann HP, Sauer U, 2005. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol. Bioeng. 89: 219-232.

47. Zhu J, Shalel-Levanon S, Bennett GN, San KY, 2006. Effect of the global redox sensing/regulation networks on Escherichia coli and metabolic flux distribution based on C-13 labeling experiments. Metab. Eng. 8: 619-627.

 

 

Autor:

Pablo I. Nikel

Enviado por:

Juanita Rosales Pérez

edu.red

ISSN 1666-7948 www.quimicaviva.qb.fcen.uba.ar

Revista QuímicaViva Número 2, año 8, Agosto de 2009

a Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Colectora

Av. General Paz 5445, B1650KNA, INTI – Ed. 24, San Martín, Buenos Aires, Argentina

b Departamento de Química Biológica, Universidad de Buenos Aires, Av. Intendente Güiraldes

2160, C1428EGA, Ciudad de Buenos Aires, Argentina

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente