Principios de Estática y Resistencia de Materiales
Este trabajo se encuentra en formato PDF. Para visualizarlo necesita Adobe Reader (gratuito).
Resúmen
Equilibrio del cuerpo rígido sometido a fuerzas
Se ha visto hasta ahora que un sistema de fuerzas que actúan sobre un cuerpo rígido es equivalente a una resultante cuyo módulo es el de la suma vectorial de las componentes. La recta de acción de esa resultante debe pasar por el punto para el cual se anula la suma de los momentos de primer orden de todas las componentes.
Si ese punto no puede hallarse es porque además de las fuerzas, actúa sobre el cuerpo rígido un par de fuerzas paralelas de igual intensidad y sentido contrario, que no es reducible a una sola fuerza: se trata de una cupla, caracterizada por su momento.
Para que haya equilibrio estático de fuerzas (sin movimiento) sobre un cuerpo rígido, deben ser nulos la resultante y el momento de todas las fuerzas con respecto a cualquier punto del plano en el caso de fuerzas que residen en un plano (coplanares).
Otra condición de equilibrio equivalente a la anterior es que sean nulos los momentos resultantes de todas las acciones con respecto a tres puntos no alineados pertenecientes al plano. Se comprende que esta última condición garantiza que la resultante sea nula. En efecto, si no lo fuera y dos de los puntos cayeran sobre su recta de acción, darían momento nulo, dando la sensación de equilibrio; sin embargo, el tercero no alineado acusaría un momento no nulo, poniendo de manifiesto así una resultante distinta de cero.
Un sistema en el espacio sometido a fuerzas no coplanares, se puede resolver proyectando las fuerzas sobre tres planos no paralelos (por ejemplo uno (X,Z) vertical, otro (X,Y) horizontal y un tercero (X,Z) perpendicular a los otros dos, correspondientes a una vista en elevación de frente, otra en planta y una tercera en profundidad) y buscando la resultante en cada proyección, que serán componentes de la resultante en el espacio.
El equilibrio en este caso exige resultante nula (las tres proyecciones nulas) y momento nulo. Con respecto al momento, recordemos que es un vector, resultado del producto de la fuerza por la distancia. Ese vector es libre, es decir no tiene punto de aplicación ni recta de acción. Sólo dirección. En un sistema de fuerzas en el plano es perpendicular al mismo. En el caso de fuerzas en el espacio el momento es un vector espacial, es decir que tiene tres componentes o proyecciones una en cada uno de los ejes coordenados.
Enviado por Ronald Maxwell Campos Cisneros
Trabajos relacionados
Ver mas trabajos de Filosofia |
Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.
Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de edu.red. El objetivo de edu.red es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de edu.red como fuentes de información.