Descargar

Dinámica del cuerpo rígido

Enviado por Pablo Turmero


    edu.red Movimiento rotacional de un sistema de partículas. Conservación del momento angular. Momento de inercia de un sistema de partículas y de un cuerpo rígido. Torque y momento angular. Torque y momento de inercia, aplicaciones. Dinámica del cuerpo rígido.

    edu.red Dinámica de Rotación. Sólido rígido es el cuerpo cuyas partículas conservan invariantes en el tiempo las distancias relativas que las separan En el movimiento de rotación las partículas del sólido rígido describen trayectorias circulares con centro en el eje de rotación y situadas en planos perpendiculares a dicho eje

    edu.red Centro de Masas. Definición. El centro de masas de un cuerpo es un punto que describe la misma trayectoria que una partícula sometida a las mismas fuerzas que el cuerpo. Propiedades. La resultante de las fuerzas exteriores aplicadas sobre un sistema puede considerarse aplicada sobre el centro de masas. La cantidad de movimiento de un sistema es igual a la de su centro de masas. Fext = m acm

    edu.red

    edu.red FUERZA. CAUSA MOMENTO. ACELERACIÓN. EFECTO ACELERACIÓN ANGULAR. MASA. INERCIA MOMENTO DE INERCIA. LEY TRASLACIÓN. ROTACIÓN. Comparación entre dinámica de traslación y de rotación.

    edu.red

    edu.red

    edu.red

    edu.red Momento de Inercia. El momento de Inercia de una partícula respecto a un eje es el producto de la masa “m” por el cuadrado de la distancia al eje de giro “r”. Es una medida de la inercia del cuerpo al giro sobre ese eje. No es propio del cuerpo, depende del eje. Es una magnitud tensorial. Su unidad es kg·m2. I = m r2 m r

    edu.red Momento de Inercia (continuación)

    edu.red

    edu.red Teorema de Steiner. El momento de inercia de un sólido respecto a un eje es igual a la suma del momento de inercia del sólido respecto a un eje paralelo al primero y que pase por su centro de masas Icm, más el producto de la masa total del sólido M, por el cuadrado de la distancia entre los ejes

    edu.red Momento angular. El momento angular ó cinético “L”, de una partícula respecto a un punto “O” es el producto vectorial de su posición “r”, respecto a dicho punto por su cantidad de movimiento “p”. También puede expresarse como: De esta forma la ley fundamental de la dinámica puede expresarse: Es el momento de la cantidad de movimiento.

    edu.red Teorema de la conservación del Momento Angular. Si la suma de los momentos de las fuerzas exteriores que actúan sobre un sistema es nulo, el momento angular del sistema permanece constante APLICACIONES. Movimiento de planetas. Giro de patinador. Rueda de bicicleta. Si M = 0 entonces L = constante.

    edu.red

    edu.red

    edu.red

    edu.red

    edu.red

    edu.red

    edu.red

    edu.red

    edu.red BIBLIOGRAFIA. http://www.google.com.pe/url?url=http://www.javierdelucas.es/rotacion. http://hyperphysics.phyastr.gsu.edu/hbasees/mi.html#c2. Rotación de cuerpo rígido. Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University. Mc Graw Hill