Control de Procesos ¿Qué es un sistema de control ? En nuestra vida diaria existen numerosos objetivos que necesitan cumplirse. En el ámbito doméstico Controlar la temperatura y humedad de casas y edificios En transportación Controlar que un auto o avión se muevan de un lugar a otro en forma segura y exacta En la industria Controlar un sinnúmero de variables en los procesos de manufactura
Control de Procesos En años recientes, los sistemas de control han asumido un papel cada vez más importante en el desarrollo y avance de la civilización moderna y la tecnología. Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria: tales como control de calidad de los productos manufacturados, líneas de ensa,ble automático, control de máquinas-herramienta, tecnología espacial y sistemas de armas, control por computadora, sistemas de transporte, sistemas de potencia, robótica y muchos otros
Ejemplos de procesos automatizados Un moderno avión comercial
Ejemplos de procesos automatizados Satélites
Ejemplos de procesos automatizados Control de la concentración de un producto en un reactor químico
Ejemplos de procesos automatizados Control en automóvil
¿ Por que es necesario controlar un proceso ? Incremento de la productividad Alto costo de mano de obra Seguridad Alto costo de materiales Mejorar la calidad Reducción de tiempo de manufactura Reducción de inventario en proceso Certificación (mercados internacionales) Protección del medio ambiente (desarrollo sustentable)
Control de Procesos El campo de aplicación de los sistemas de control es muy amplia. Y una herramienta que se utiliza en el diseño de control clásico es precisamente:
La transformada de Laplace
¿Por qué Transformada de Laplace? En el estudio de los procesos es necesario considerar modelos dinámicos, es decir, modelos de comportamiento variable respecto al tiempo. Esto trae como consecuencia el uso de ecuaciones diferenciales respecto al tiempo para representar matemáticamente el comportamiento de un proceso.
¿Por qué Transformada de Laplace? El comportamiento dinámico de los procesos en la naturaleza puede representarse de manera aproximada por el siguiente modelo general de comportamiento dinámico lineal:
La transformada de Laplace es una herramienta matemática muy útil para el análisis de sistemas dinámicos lineales.
¿Por qué Transformada de Laplace? De hecho, la transformada de Laplace permite resolver ecuaciones diferenciales lineales mediante la transformación en ecuaciones algebraicas con lo cual se facilita su estudio.
Una vez que se ha estudiado el comportamiento de los sistemas dinámicos, se puede proceder a diseñar y analizar los sistemas de control de manera simple.
El proceso de diseño del sistema de control Para poder diseñar un sistema de control automático, se requiere Conocer el proceso que se desea controlar, es decir, conocer la ecuación diferencial que describe su comportamiento, utilizando las leyes físicas, químicas y/o eléctricas. A esta ecuación diferencial se le llama modelo del proceso. Una vez que se tiene el modelo, se puede diseñar el controlador.
Conociendo el proceso MODELACIÓN MATEMÁTICA Suspensión de un automóvil (Gp:) f(t) (Gp:) z(t) (Gp:) k (Gp:) b (Gp:) m
Fuerza de entrada Desplazamiento, salida del sistema
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Suspensión de un automóvil Función de transferencia
Conociendo el proceso MODELACIÓN MATEMÁTICA Nivel en un tanque qo(t) Flujo de salida R (resistencia de la válvula) h(t) qi(t) Flujo de entrada Flujo que entra Flujo que sale = Acumulamiento A (área del tanque)
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Nivel en un tanque Función de transferencia
Conociendo el proceso MODELACIÓN MATEMÁTICA Circuito eléctrico
El rol de la transformada de LaplaceConviertiendo ecs. diferenciales a ecs. algebráicas Circuito eléctrico Función de transferencia
La función de transferencia Representa el comportamiento dinámico del proceso Nos indica como cambia la salida de un proceso ante un cambio en la entrada
Diagrama de bloques Proceso Entrada del proceso (función forzante o estímulo) Salida del proceso (respuesta al estímulo)
La función de transferencia Diagrama de bloques Suspensión de un automóvil
Entrada (Bache) Salida (Desplazamiento del coche)
La función de transferencia Diagrama de bloques Nivel en un tanque
Qi(s) (Aumento del flujo de entrada repentinamente) H(s) (Altura del nivel en el tanque
La función de transferencia Diagrama de bloques Circuito eléctrico
Ei(s) (Voltaje de entrada) Eo(s) (Voltaje de salida)
Propiedades y teoremas de la transformada de Laplace más utilizados en al ámbito de control TEOREMA DE TRASLACIÓN DE UNA FUNCIÓN (Nos indica cuando el proceso tiene un retraso en el tiempo)
TEOREMA DE DIFERENCIACIÓN REAL (Es uno de los más utilizados para transformar las ecuaciones diferenciales)
Propiedades y teoremas de la transformada de Laplace más utilizados en al ámbito de control TEOREMA DE VALOR FINAL (Nos indica el valor en el cual se estabilizará la respuesta)
TEOREMA DE VALOR INICIAL (Nos indica las condiciones iniciales)
Se tiene un intercambiador de calor 1-1, de tubos y coraza. En condiciones estables, este intercambiador calienta 224 gal/min de agua de 80°F a 185°F por dentro de tubos mediante un vapor saturado a 150 psia.
En un instante dado, la temperatura del vapor y el flujo de agua cambian, produciéndose una perturbación en el intercambiador. Ejemplo aplicado: Intercambiador de calor
a) Obtenga la función de transferencia del cambio de la temperatura de salida del agua con respecto a un cambio en la temperatura del vapor y un cambio en el flujo de agua, suponiendo que la temperatura de entrada del agua al intercambiador se mantiene constante en 80°F. b) Determine el valor final de la temperatura de salida del agua ante un cambio tipo escalón de +20°F en la temperatura del vapor, y un cambio de +10 gal/min en el flujo de agua. c) Grafique la variación de la temperatura de salida del agua con respecto al tiempo. Ejemplo aplicado: Intercambiador de calor
Ecuación diferencial que modela el intercambiador de calor
Ejemplo aplicado: Intercambiador de calor
Intercambiador de calor Ecuación diferencial
Donde: Ud0: Coeficiente global de transferencia de calor referido al diámetro exterior (BTU/h °F ft2) ATC0: Área de transferencia de calor referida al diámetro exterior (ft2) Cp : Capacidad calorífica (BTU/lb °F) tv : Temperatura del vapor (°F) te : Temperatura del agua a la entrada (°F) ts : Temperatura del agua a la salida (°F) (te+ ts) / 2 :Temperatura del agua dentro de tubos (°F) tref : Temperatura de referencia (°F) w : Flujo de agua (lb/h) m : Cantidad de agua dentro de tubos (lb) : Valores en condiciones estables Tv , Ts , W Variables de desviación
Intercambiador de calor Linealizando 1
2 Evaluando en condiciones iniciales estables 3
Restando (2) de (3)
Intercambiador de calor Utilizando variables de desviación
Aplicando la transformada con Laplace
Intercambiador de calor Simplificando
Datos físicos Largo del intercambiador = 9 ft Diámetro de coraza = 17 ¼ Flujo = 224 gal/min Temperatura de entrada =80°F Temperatura de salida = 185°F Presión de vapor =150psia. Número de tubos= 112 Diámetro exterior de tubo = ¾ de diámetro y BWG 16, disposición cuadrada a 90°, con un claro entre tubos de 0.63. Conductividad térmica de los tubos = 26 BTU/hft°F, Factor de obstrucción interno = 0.0012 hft2°F/BTU; externo = 0.001 hft2°F/BTU Coeficiente global de transferencia de calor = 650 BTU/hft2°F
Intercambiador de calor Calculando las constantes
Intercambiador de calor Función de transferencia
Determine el valor final de la temperatura de salida del agua ante un cambio tipo escalón de +20°F en la temperatura del vapor, y un cambio de +10 gal/min en el flujo de agua.
0 0
Intercambiador de calor
(Gp:) Flujo de agua entrada (Gp:) Salida de Agua °T (Gp:) Temp de Vapor entrada (Gp:) Salida de vapor
(Gp:) 0 (Gp:) 5 (Gp:) 10 (Gp:) 15 (Gp:) 20 (Gp:) 25 (Gp:) 30 (Gp:) 35 (Gp:) 40 (Gp:) 45 (Gp:) 50 (Gp:) 0 (Gp:) 2 (Gp:) 4 (Gp:) 6 (Gp:) 8 (Gp:) 10 (Gp:) 12 (Gp:) 14 (Gp:) 16 (Gp:) 18 (Gp:) 20 (Gp:) 224 (Gp:) 234
220 240 185 188.85
La respuesta del proceso en el tiempo Transformada Inversa De Laplace
La respuesta del proceso en el tiempo Transformada Inversa De Laplace
El sistema de control automático Temperatura del agua de salida Lazo abierto (sin control)
Temperatura del agua de salida Lazo cerrado (con control) (Gp:) (Gp:) Tv(s) (Aumento de la temperatura de vapor a la entrada ) (Gp:) Ts(s) (Aumento en la temperatura de agua a la salida)
Controlador + – Valor deseado Acción de control Variable controlada
La ecuación del controlador ECUACIÓN DIFERENCIAL DE UN CONTROLADOR PID
Donde E(s) es la diferencia entre el valor deseado y el valor medido
El sistema de control automático Temperatura de agua a la salida Lazo cerrado (con control)
(el tiempo de estabilización para el sistema controlado es de 4 min, a partir del cambio en la entrada) (Gp:) + – (Gp:) Valor deseado (Gp:) Acción de control (Gp:) Variable controlada
La respuesta del sistema de controlde nivel Comparación del sistema en lazo abierto (sin control) y en lazo cerrado (con control) Con control Sin control
¿ Preguntas ? Ing. Elvira Niño Departamento de Mecatrónica y Automatización [email protected] Aulas 7, 3er piso — LD – 306 – H
Actividad para realizar en casa Un sistema de suspensión simplificada de un automóvil se puede representar por la figura siguiente:
Las ecuaciones diferenciales que modelan al sistema están dadas por:
Actividad para realizar en casa Obtén la función de transferencia (Tip: transforma ambas ecuaciones, despeja X(s) en ambas e iguálalas, finalmente reacomoda para dejar Y(s)/U(s) ) b) Se sabe que b=1300 Ns/cm, k1=2000 KN/cm, k2=50KN/cm, m2=1850 kg y m1 = 20 kg. Si se le aplica una cambio escalón unitario en la entrada de fuerza, obtén la expresión en el tiempo, es decir, la transformada inversa de dicha función. c) Utilizando cualquier paquete de graficado, excel, matlab, mathematica, etc. Grafica la respuesta del desplazamiento en el tiempo para t = [0,20]