Regla General de la Adición de Probabilidades para Eventos No Mutuamente Excluyentes
Enviado por Mario Orlando Suárez Ibujes
Regla general de la adición de probabilidades para eventos no mutuamente excluyentes
Si A y B son dos eventos no mutuamente excluyentes (eventos intersecantes), es decir, de modo que ocurra A o bien B o ambos a la vez (al mismo tiempo), entonces se aplica la siguiente regla para calcular dicha probabilidad:
El espacio muestral (S) corresponde al conjunto universo en la teoría de conjuntos
Ejemplos ilustrativos
1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
2) En una urna existe 10 bolas numeradas del 1 al 10. ¿Qué probabilidad existe de sacar en una sola extracción una bola enumerada con un número par o con un número primo?
Solución:
O también, realizando un diagrama de Venn-Euler se obtiene:
3) En una clase, 10 alumnos tienen como preferencia solamente la asignatura de Matemática, 15 prefieren solamente Estadística, 20 prefieren Matemática y Estadística y 5 no tienen preferencia por ninguna de estas asignaturas. Calcular la probabilidad que de un alumno de la clase seleccionado al azar tenga preferencia por Matemática o Estadística o ambas asignaturas.
Solución:
Realizando un diagrama de Venn-Euler se obtiene:
Simbología:
S = espacio muestral
A= Matemática
B = Estadística
a = Solamente Matemática
b = Solamente Estadística
c = Matemática y Estadística
d = Ninguna de las dos asignaturas
Datos y cálculos:
Entonces, aplicando la fórmula de la probabilidad teórica se obtiene:
Los cálculos en Excel se muestran en la siguiente figura:
4) En un grupo de 50 personas, 6 tienen como preferencia solamente el color amarrillo, 10 prefieren solamente el color blanco, 6 prefieren el color amarrillo y blanco, 10 prefieren el color blanco y café, 12 prefieren el color amarrillo y café, 4 prefieren los 3 colores y 10 no tienen preferencia por ninguno de los tres colores.
4.1) Elaborar un diagrama de Venn-Euler
4.2) Calcular la probabilidad que de una persona del grupo seleccionada al azar tenga preferencia por lo menos uno de los tres colores.
Solución:
4.2)
Entonces, aplicando la fórmula de la probabilidad teórica se obtiene:
Nota:
Si A, B y C son tres eventos cualesquiera de modo que ocurra A o bien B o bien C o bien los tres a la vez se emplea la regla:
Observando el diagrama de de Venn-Euler se tiene que:
Reemplazando valores en la regla se obtiene:
Los cálculos en Excel se muestran en la siguiente figura:
Autor:
Mario Orlando Suárez Ibujes