Descargar

Conversión de binario a decimal (página 2)

Enviado por Pablo Turmero


Partes: 1, 2
edu.red

Conversión del Sistema Hexadecimal a Decimal Para convertir un número del Sistema Hex a su equivalente Decimal necesitamos primero recordar que la posición de los números en del Sistema Hex, basan su valor en una potencia de 16. El Primer Bit (LSB) sería 16 a la 0 = (1), el segundo Bit sería 16 a la 1ª = (16), el tercer Bit sería 16 a la 2ª = (256), aumentando las potencias de 16 hasta llegar al último Bit (MLB). La conversión se realiza entonces de la siguiente manera: Convertir el número Hex 182 al Sistema Decimal

edu.red

Convertir el número Hex 182 al Sistema Decimal

edu.red

Convertir el número Hex 6AF al Sistema Decimal

edu.red

Conversión del Sistema Decimal a Hexadecimal Nuevamente acudimos a la "División repetida para lograr esta conversión, al igual que en los ejemplos anteriores (división por 2 para convertir Decimal a Binario, y división por 8 para convertir Decimal a Octal), pero esta vez, la división será por 16. Al igual que antes, si el residuo contiene fracciones decimales, se multiplican por 16 y se toma el número entero para la nueva división por 16. Convertir los números 1711 y 386 del Sistema Decimal s Hex.

edu.red

edu.red

Conversión del Sistema Hexadecimal a Binario Al igual que en la conversión del Sistema Octal (que se convierten en tríos de Bits Binarios), en la conversión del Sistema Hexadecimal a Binario, cada Bit Hex se convierte en cuartetos de Bits Binarios.Convertir el número del Sistema Hex 8A1 a Binario sería:

edu.red

edu.red

Conversión del Sistema Binario a Hexadecimal La forma de convertir un número del Sistema Binario a Hex, es completamente opuesta a la presentada arriba. Se forman cuartetos de Bits Binarios (comenzando desde el LSB) hasta el MSB. Al igual que en la conversión de Sistema binario a Octal, en caso de que no se completen los cuartetos, se agregan los ceros necesarios para completar lo últimos cuatro Bits.Convertir el número del Sistema Binario 100010100001 a Hex sería: Se agrupan los bits en cuartetos (100010100001) = 1000 – 1010 – 0001 Se convierte el Primer cuarteto (donde se encuentra el LSB) 0001= 1 Se convierte el Segundo trío 1010 = 10 = A Se convierte el Tercer trío (donde se encuentra el MSB) 1000 = 8 Número Hex = 8A1

edu.red

¿Que es el código BCD? Ahora ya sabemos que los números del Sistema decimal tienen equivalentes en el Sistema Binario, La agrupación ordenada de los 0 y 1 de un número Binario representa algún número Decimal.Los sistemas digitales utilizan por fuerza los números en Sistema Binario, pero para nosotros en el mundo real siempre tienen que ser convertidos al Sistema Decimal, como hemos visto, las conversiones entre uno y otro Sistema de Números pueden llevarnos demasiado tiempo y ser muy complicadas, por ejemplo, si usamos números muy grandes. Para este tipo de conversiones y usos, se utiliza un método sencillo que combina las características de los Sistemas Decimal y Binario, este método lleva el nombre de Codificación Binaria Directa.

edu.red

Cuando tomamos cada uno de los dígitos del Sistema Decimal, y lo representamos con su equivalente del Sistema Binario, estamos generando un "nuevo" código, el cuál lleva el nombre de Código Decimal Codificado en Binario (BCD).Partiendo de este nuevo código, el mayor número que podemos representar es el 9 (1001), por lo tanto forzosamente necesitamos de un número Binario de 4 Bits para hacerlo. Pero veamos gráficamente que es y como funciona el BCD. En esta ocasión usaremos los números Decimales 586 y 397, el proceso de convertir cada dígito por un equivalente Binario sería el siguiente:

edu.red

edu.red

Cada uno de los dígitos del Número Decimal es convertido en su equivalente Binario, Siempre utilizando 4 Bits para este proceso. En resumen, el Código BCD representa por separado cada uno de los numerales Decimales, empleando para ello números Binarios de 4 Bits. Como es lógico, si sólo se puede representar un solo número decimal por cada código BCD, los números del 10 al 15 (que es el número decimal más alto para un código Binario de 4 Bits, 1111), están fuera del código, de hecho, si tenemos algún circuito digital que trabaja sobre Código BCD y nos diera una salida como las siguientes, algo no está funcionando bien:

edu.red

Decimal 10 = Binario 1010 Decimal 11 = Binario 1011 Decimal 12 = Binario 1100 Decimal 13 = Binario 1101 Decimal 14 = Binario 1110 Decimal 15 = Binario 1111

edu.red

Como el nombre lo indica, el Código BCD no puede ser catalogado como un Sistema (como el Binario, Octal y Hex). Sólo es una forma de Codificar el Sistema Binario. Teniendo muy presente este hecho, Un número en código BCD, NO es lo mismo que un número Binario Directo. El código BCD toma cada uno de los dígitos de un número Decimal y los representa, Un número del Sistema Binario representa el número Decimal Completo. Para comprender mejor el concepto, usaremos el número Decimal 387. Diferencias entre el Sistema Binario y el Código BCD

edu.red

Tabla de conversión al Sistema Binario

edu.red

Tabla de conversión al Código BCD

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente